Skip to content

Algorithmus verfolgt Fake News in Echtzeit

Machine Learning erlaubt dem System Einblick in Fehlinformationskampagnen.
© Pixabay

Forscher der Universität Princeton haben einen Algorithmus entwickelt, der Fake-News-Kampagnen im Internet in Echtzeit verfolgen kann. Indem das System per Machine Learning vergangene Fehlinformationskampagnen analysiert, kann es die Muster solcher Aktionen vorhersehen. Damit sollen Manipulationen wie beispielsweise bei der amerikanischen Präsidentenwahl im November verhindert werden.

Das Team hat den Algorithmus mit Daten aus vergangenen Fehlinformationskampagnen trainiert. Die Fake News stammten dabei aus China, Russland und Venezuela und hatten sich gegen die US-Präsidentschaftswahl im Jahr 2016 gerichtet. Das System untersuchte Postings auf Twitter und Reddit sowie die darin enthaltenen Hyperlinks und URLs.

Im Test erwies sich der Algorithmus als sehr effektiv bei der Suche nach Postings und Social-Media-Accounts, die mit Fake-News-Kampagnen verbunden waren. Die Forscher hoffen, durch diese Methode künftig ein Echtzeit-Warnsystem gegen Fehlinformationen zu etablieren.

„Wir können in Echtzeit einschätzen, wie viel Fake News im Internet im Umlauf sind und über welche Themen sie sprechen. Es ist zwar keine perfekte Lösung, aber es würde die Betreiber dieser Kampagnen dazu zwingen, kreativer zu werden oder sogar aufzugeben“, erklärt Forschungsleiter Jacob N. Shapiro.

pressetext/red

Gefällt Ihnen der Beitrag?
Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on telegram
Telegram
Share on whatsapp
WhatsApp
Share on email
Email